Simple and Composite Null UMP Tests

Recall that a test is deemed UMP at a level \alpha if for any value \theta  of the parameter in the alternative hypothesis, the same test is UMP for the test of the simple hypothesis H_0: \theta = \theta_0 vs. H_1: \theta = \theta_1. The Neyman-Pearson Lemma tells us that when testing H_0: X \sim P_{\theta_1} \text{ vs. } H_1: X \sim P_{\theta_2} that the Likelihood Ratio Test is uniformly most powerful among all level \alpha tests. We now seek to extend this test to the composite hypothesis setting. First note though that it is in general implausible to have a UMP test for a two-sided hypothesis. We will see more carefully later on why this is so, but it has to do with the fact that different tests are UMP depending on which side of the null parameter values the alternative lies. Thus the best we can do is to find sufficient conditions for UMP tests of 1-sided composite nulls and alternatives. The extension to this case is known as the Karlin-Rubin Theorem, and states the following:

\text{Theorem.} If p(x|\theta) has monotone likelihood ratio in a sufficient statistic T(X) then the test T(X) > c is UMP for testing the hypothesis H_0: \theta = \theta_0  vs.  H_1: \theta > \theta_0 .

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s