Privacy | Fairness
All author ordering is strictly alphabetical. My research has a few threads:
- Fairness in Machine Learning (design of new algorithms and fairness notions, in the online, bandit, batch settings)
- The study of fundamental problems in differential privacy, with an emphasis on private learning
- Adaptive Data Analysis
Publications
16. Eliciting and Enforcing Subjective Individual Fairness [FORC ’21]
15. Descent-to-Delete: Gradient-Based Methods for Machine Unlearning [Algorithmic Learning Theory ’21]
14. Optimal, Truthful, and Private Securities Lending [ACM AI in Finance ’20, NEURIPS Workshop on Robust AI in Financial Services ’19] selected for oral presentation!
13. Differentially Private Objective Perturbation: Beyond Smoothness and Convexity [ICML ’20, NEURIPS Workshop on Privacy in ML ’19]
12. A New Analysis of Differential Privacy’s Generalization Guarantees [ITCS ’20] regular talk slot!
11. The Role of Interactivity in Local Differential Privacy [FOCS ’19]
10. How to use Heuristics for Differential Privacy [FOCS ’19]
9. An Empirical Study of Rich Subgroup Fairness for Machine Learning [ACM FAT* ’19, ML track]
- Led development on package integrated into the IBM AI Fairness 360 package here. AIF360 development branch on my Github, with a stand-alone package developed by the AlgoWatch Team.
8. Fair Algorithms for Learning in Allocation Problems [ACM FAT* ’19, ML track]
7. Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness [ICML ’18, EC MD4SG ’18]
6. Mitigating Bias in Adaptive Data Gathering via Differential Privacy [ICML ’18]
5. Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM [NIPS ’17, Journal of Privacy and Confidentiality ’19]
4. A Framework for Meritocratic Fairness of Online Linear Models [AAAI/AIES ’18]
3. Rawlsian Fairness for Machine Learning [FATML ’16]
2. A Convex Framework for Fair Regression [FATML ’17]
Math stuff from College & High School
1. Aztec Castles and the dP3 Quiver [Journal of Physics A ’15]
0. Mahalanobis Matching and Equal Percent Bias Reduction[Senior Thesis, Harvard ’15]
0. Plane Partitions and Domino Tilings [Intel Science Talent Search Semifinalist, ’11]